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TECHNICAL NOTE NO. 1589

EFFECT OF LONGITUDINAL STIFFENERS ON THE BUCKLING
LOAD OF LONG FLAT PLATES UNDER SHEAR

By Harold Crate and Hsu Lo
SUMMARY

An investigation was made to determine the effect of longitudinal
stiffeners on the buckling load of long flat plates under shear.
Tests were made of long flat plates relnforced by one and by two
longitudinal stiffeners. A theoretical study of the buckling load of
such plates, made by the energy method, is presented in the appendix.
The results of the tests and the results of the theory are compared
and are found to be in falr agreement.

INTRODUCTION

Buckling of the stressed skin of a wing under applied shear
loads results in a reduced torsional stiffness and a reduced aero—
dynamic fairness of the wing. Because there is danger of flutter or
alleron reversal occurring if the torsional stiffness of the wing is
not maintained up to high loads and because high-speed pull—outs may
be difficult or impossible if reduced aerodynamic fairness causes
premature separation of the flow over the wing, it is desirable to
determine the shear stress at which the reinforced skin of the wing
buckles. The problem is of particular importance in the case of
high-speed airplanes which are normally subJject to flutter and
control problems. With a view toward eliminating some of the
problems in high-speed flight, therefore, a solution to the problem
of the shear buckling of a type of panel likely to be used in the wings
of fagt airplanes has been gought.

The thin wings needed for high—epeed airplanes have thick skins
and several shear webs. The wing panels are narrow and, therefore,
are reinforced by relatively few stiffeners. Accordingly, tests were
made to determine the shear buckling load of long plates reinforced
by one and by two longitudinal stiffeners. In addition, a theoretical
solution of the problem for any number of stiffeners was made. The
results of the tests are presented herein and are compared with the
results of the theory.

The symbols are defined in the appendix.
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TEST SPECIMENS

The specimens tested were flat plates with a length—width ratio
of 8 reinforced by longitudinal stiffeners., The general construction of
the test specimens is shown in figure 1, and the specific dimensions of
the individual specimens are listed in table I.

Two groups of specimens were tested. Each specimen of the first
group had one stiffener riveted along the longitudinal center line of the
panel. Each specimen of the second group had two longitudinal stiffeners
of equal size riveted to the panel in order to divide the panel into three
bays of equal width. The dimensions of the specimens of the first group
were nominally 6 inches wide and 48 inches long. For the dimensions of
specimens of the second group, the width was made 7% inches in order that
the attached legs of the stiffeners would not cover a large part of the
width of the bays, and the length was increased to 63 inches in order that,
at the same time, the length—width ratio should remain at a value of 8.

The webs of all specimens were of nominally 0,032—inch—thick
24LST aluminum-elloy sheet. The stiffeners were of 24S-T aluminum—alloy
sheet bent to the shape of angles. Two angles were used for each stiff-
ener, one on each side of the web, to provide symmetry about the plane of
the web., The thickness and leg dimensions of the angles were varied to
produce the bending stiffness desired,

The short edges (ends) of the specimens were reinforced with angles.
These angles were of uniform size for all specimens with one stiffener and
were proportionally larger and of uniform size for all specimens with two
gtiffeners. These end angles were so designed that there was & margin of
safety against failure of the angles before buckling of the web occurred.

TEST APPARATUS AND TESTING PROCEDURE

The specimens were tested in a Jig as shown in figure 2. One part of
this jig distributed the applied load along one edge of the web, and the
other part picked up the reaction from the opposite edge of the web and
transferred this reaction to a heavy supporting structure. Both parts
of the Jig were essentially the same, and each part consisted of two
heavy steel bars bolted to each side of a steel plate which protruded
from between the bars and to which the specimen was riveted. The large
crogs—sectional ares of the bars ingured that the distribution of load
was essentially uniform over the full length of the web,.

A portable hydraulic Jack which indicated loads with standard
testing-machine accuracy of one~half of 1 percent, was used to apply the
load to the specimens.

Two dial gages graduated to l/lOOOO inch were used to measure the
shear displacement of the loaded edge of the sheet relative to the fixed
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edge. These gages were mounted on each side of the web at the midlength
of the specimen.

The test procedure was as follows: The specimen was preloaded in
geveral increments to about 25 percent of the estimated buckling load, and
the dial gages were read after each increment of load had been applied.

If the dial—gage readings indicated equal movement on both sides of the
web up to the full preload, it was assumed that the Jjack was properly
positioned under the specimen and the load was released. The load was
reapplied and the dial-gage readings were taken at a number of loads until
buckles were clearly visible in the web. Readings were then taken less
frequently until the specimen could sustain no further increase in load.

ANATYSTS AND DISCUSSION

Theoretical critical stresses.— The theoretical study of the shear
buckling load of a long flat plate, reinforced by longitudinal stiffeners,
with shear load acting at the longitudinal edges is presented in the
appendix. Two different restraining conditions at the longitudinal edges
are investigated — simply supported edges and clamped edges. The results
of the theoretical study are summarized in figure 3. For each edge
restraint condition, three separate curves are shown, The curves corres—
pond to the plate reinforced by one stiffener, by two identical equally
spaced stiffeners, and by a large number of identical equally spaced
gstiffeners. The three curves are essentially one with a maximum deviation
of approximately 2 or 3 percent. The appendix points out that the curve
for a large number of 1dentical equally spaced stiffeners can be used to
represent, within 2 or 3 percent, the solution of the plate reinforced by
any number of identical equally spaced stiffeners,

Fach curve in figure 3 has an upper limit corresponding to the crite—
rion that the plate buckles in such a way that the stiffeners can be
replaced by simple supports. In the case of a simply supported plate with
one stiffener, for instance, the shear buckling coefficient k cannot be
increased beyond approximately 21.4 by increasing the stiffness of the
gtiffener.

Experimental buckling data.— In figure 4 are shown typical results of
a test in the form of a curve of shear deformation, as measured by the

dial gages, plotted against load on the specimen, The first part of this
curve is linear (1.e., deformation 1s proportional to load) and corres—
ponde to a constant shear stiffness for the web. The second part above

the linear part shows a gradual increase in the rate of deformation of the
web with load (i.e., a gradual decrease in the shear stiffness of the web),
Since, for all specimens tested, the stress at which the second part of the
curve started was well below the yield stress for the web materisl in
shear, it is reasonable to assume that the change in shear stiffness of the
web was due to buckling. Since, however, the shear stiffness changes very
gradually, it is difficult to select comsistent buckling loads from plots
guch as figure 4; and in order that the selection be confined to a




L NACA TN No. 1589 .

reasonably short range of load, the effect of a change in the shear -
gtiffness of the web was accentuated in the following manner.

Method for defining experimental critical stress.— For each specimen
tested, the deviation of the load—deformation curve from an extension of
the linear part of that curve was computed. Thie quantity was squared and
plotted against the load on the specimen, The resulting plots of load
againgt deviation squared, arranged in the order of increasing stiffness
ratio 7y, are shown in flgure 5(a) for pne—stiffener specimens and in
figure 5(b) for two—-stiffener specimens. ZEach of the curves of the figure
exhibits a knee which starts as soon as the deformation of the specimen is
no longer proportional to the load. The buckling load corresponds to some
point on the knee of the curve of load against deviation squared.

Comparison of theory and experiment.— A theoretical critical buckling
load P,,., based on the buckling coefficient from figure 3 and on the

dimensions listed in table 1, is marked on each test curve of figures 5(a)
and 5(b) in order to provide a means of direct comparison between test
data and theory. The subscripts e and c¢ are used to denote whether
the edges are simply supported or clamped. It will be noted that for 18
of the 20 specimens the start of the knee of the test curve lies within
or very close to one edge of the range bracketed by the two extreme

values (Pcr)s and (Pcr . , )

Maximum stresses.— The maximum load sustained by each specimen is
marked on the curves of figures 5(a) and 5(b). For both one—stiffener
and two—stiffener groups of specimens, the load at failure tended to
increase slightly with increase in the stiffness ratio 7. In all cases,
failure ultimately occurred by twisting and collapse of the angle across
the top edge of the specimen, Since this top angle was of one size for
all one—stiffener specimens and of another size for all two—stiffener
specimens, the size and proportions of the longitudinal stiffeners must
have affected somewhat the maximum load carried by the specimen by

restralning the top angle from twisting.
CONCLUDING REMARKS

The theoretical shear buckling coefficient for a long flat plate
reinforced with any number of longitudinal stiffeners, of equal stiffnese
and equally spaced across the plate, can be obtained from a single curve
for each of the edge conditions — simply supported or clamped. The test
results were found to be in fair agreement with the theoretical studies.

Langley Memorial Aeronautical Iaboratory
National Advisory Committee for Aeronautics
Langley Field, Va., December 4, 1947
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APPENDIX
THEORETICAL ANALYSIS

Two solutions applicable to the problem of the shear buckling
of a flat plate reinforced by longitudinal stiffeners are presented
in references 1 and 2. The first of these two solutions (reference 1,
p. 360) is an approximate solution for the case of simply supported
edges and 1s obtalned by the energy method. The deflection function
used was limited to a gingle half sine wave across the width of the
plate and did not completely satisfy the conditions of simply
supported edges along the length of the plate. The solution con—
sequently yilelds buckling loads which are too high and unconservative.
The second of the two solutions (reference 2) presents results for
the shear buckling of a long orthogonal—anisotropic (often called
orthotropic) flat plate with either gimply supported or clamped
edges. These results were obtained by solving the differential
equations of equilibrium of a slightly deflected plate element. It
is reasonable to expect that this second solution would be applicable
to the case of a plate reinforced by numerous closely spaced and
uniformly spaced longitudinal stiffeners.

It was deemed desirable to obtain a more exact solution than
given in reference 1 for a long flat plate reinforced by only a
few longitudinal stiffeners and to obtalin some idea of the extent to
which the solution for an orthotropic plate in reference 2 is
applicable to a plate with a finite number of longitudinal stiffeners.
Two energy solutions were therefore obtained. The firgt solution was
for a plate with a few or a finlte number of gstiffeners and the
gsecond solution, for a plate with a very large number of 1dentical
closely spaced stiffeners. (In both cases the stiffeners were
assumed to have some flexural stiffness but zero torsional stiffness.)

Two different edge conditions were investigated. 1In the case of
simply supported edges, the infinite series type of deflection function
introduced by Kromm (reference 3) was used. This function not only
provides simple support along the edges but also provides a complete
set of functlons which describe the shape of the deflected surface
at any section across the plate. Also, 1in the case of clamped edges,

a complete set was used. With either function, it is possible to
approach as clogely as desired the exact solution to the problem.
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SYMBOLS

width of plate

distance from x-axis to ith stiffener

gtiffener spacing

gtiffener under consideration

2
(Txr) b
shear buckling coefficient cr
72D
integral number of half waves across plate
thickness of plate
deflection in z—direction

deflection of plate in z-direction
deflection of stiffener in z—direction

coordinate axes

parameters used in deflection function of plate

Eyt3

flexural stiffness per unit width of plate A
2

12411 - )

Young!s modulus for plate material

bending flexibility of stiffener

bending flexibility of the ith stiffener

regultant shear force per unit length acting in middle
plane of plate

number of bays across plate

number of stiffeners
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T work done by applied shear
Vp energy stored in buckled plate
Vg energy stored in bent stiffeners
B ratio of half wave length in x—direction to width of
A
plate <E>
7 ratio of stiffness of single stiffener to stiffness

of a strip of plate of width d when all ribs are
identical and equally spaced <ED%>

74 ratio of stiffness of ith stiffener to stiffness of
E;l;
plate o
300 Kronecker delta (1 if n =0; O if n # 0)
SJmp symbol representing the sum of a trigonometric series

which takes the value 1 if = } p is even and if

51-1% is not even, -1 if Iil—}—p- is even and if

Z E P is not even, and O for all other cases
by, T3 parameters used in deflection function of ith stiffener
A half wave length in x—direction
m Poigson's ratio for plate material (taken as 0.3)

V, €, ¢i, ¥y Lagrangian multipliers

Q
I
N
B

o
i

2mncq

0
Hi = L, > (-=1)™Rp cos
2
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SIMPLY SUPPORTED EDGES

Finite Number of Stiffeners

The deflection function

00 -]
= bi%.3 E mry x E mry
v = sin 3 Ap sin =& + cos 3 By sin — (1)

m=1 m=1

i1s assumed to express the buckled shape of the plate. (The coordinate
system is shown in fig. 6.) The integer m 1in the deflection function
represents the number of half waves across the plate, and the
parameters Ay and B, are associated with the amplitude of the

mth wave. The width of the plate 18 b and the half wave length of
the buckle in the x-direction is A.

In order to find the energy stored in the buckled plate Vp,
the energy stored in the bent stiffeners Vg, and the work T done
by the applied shear, the following equations were used:

2 2
Baw Bzw Bzw )
Vp-- axz -S? —Q(l—u) axaayz— axay d.xdy (2&

which 18 equation (199) of reference 1, and where D 1is the flexural
stiffness per unit width of plate;

N Y
8 -2]:1Z Eilif (gx—g; dx (Eb)

0] y=c4

where E;I; 1s the flexural rigldity of the ith stiffener and cy; 1is

the distance of the ith stiffener from the edge of the plate (only
bending energy of the stiffeners 1s considered and the summation is
extended over all the stiffeners on the plate); and
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3’!2’
°’|2’

e [N

which 18 obtained from equation (201) of reference 1, and where ny

is the resultant shear force per unit length acting along the longli-
tudinal edge of the plate.

It was necessary to consider only the energy and work over one
half wave length along the length of the plate since the variation
in deflection is sinusoidal in that direction.

The deflection function was substituted in equations (2) for

energy and work, and the indicated integrations were performed with
the following results:

LR 2
D 2 oo m2x2>
Vp T3 m; (Am +Bm)<l+ — (3a)

W BT < mrc prc
A n 141 i i
Vg "5 —— E E(AmA.p+Bme> sin —= sin —— (3b)

T = —2F Ay =g (3¢)

where a value for T exists only when m* p 1is odd.

When the buckling load is reached, the structure 1s in neutral
equilibrium and is capable of maintaining either the flat or buckled
form. Mathematically, this neutral equilibrium can be expressea by
setting the work done by the external load in deforming the plate
equal to the sum of the energies stored in the buckled plate and in
the bent stiffeners; that is,

T = Vp + VS

From this equation, the following critical shear force per unit length
of the plate 1s obtained:

dx dy (2¢)
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m=1 p=
E,I, ® = mnc prc
E 2 45 _;_ E (AmAp +BmBI>sin +— 8in — (La)
= m=1 p=l

Considerable simplification in the form of equation (4a) can be
made by use of the following substitutions:

=X
P =3

Ey41y
7y ==

Db

(?’W)crbg
-

K, = (l + m2B2)2

| mnc prc
= z i flais:
Nmp 2 '71 sin 3 sin o Npm

Equation (ka) now reduces to

Z(Ama + B)K + ZZ(%%%)N

3
* 2> > Ay 2

m=1 p=1
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The wave pattern which causes the shear buckling coefficient k +to
be a minimum is obtained by differentiating equation (4b) with respect
to each of the parameters Ap and By in turn and setting each of
the derivatives equal to zero. Two sets of linear algebralc equations
in Ap and B, result. Thus

1]
Q

(5a)

Ak *Zl (NmpAp + Mmpo)
P=

[}
o

BrKn +i (Nm P~ MmpAp> (5b)
P=

where

8k3  mp
Mp =% 77 = Mm

m- = p

and Mp, =0 when mZp 1is even.

Neither equation (5a) nor equation (5b) contains a constant term;
therefore, in order that the parameters A, and By have values
different from zero (1.e.; the plate takes a form other than flat),
the determinant in the coefficients of the Ap's and Bj's mst be

equal to zero. The complete determinant is infinite in extent and
may be represented in the following manner:
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For example, from determinant (54) there is obtained for the
first approximation the following subdeterminant:

Ky + Nyy Mo - V-1 Ny,

=0 (5e)
Mpp + -1 Nyp Ko + Ny
The expansion of determinant (Se) is
(ky + myp) (Ko + N 8,2 M2 =0 (6)
1+ M1y )\Po *+ Nop) —Hjp —Fi2 =

Equation (6) represents a stability criterion for the shear
buckling of a long plate with any number, spacing, and size of stiffeners
along the plate. If the number, specing, and size of stiffeners are
known, the proper values of may be substituted in equation (6)
and the resulting equation solved for k or 7.

Speclal analysis of determinant for identical equally spaced
stiffeners.— Gensrally, the stiffeners on a plate are of uniform
size and are uniformly spaced. Some simplification {n the foregoing
solution may then be introduced.

In generel,

N mnci pﬂci
Nmp=2g 7isin 5 sin 5

i=1

If the stiffness ratio 7y 1s the same for all stiffeners and J 1is
the number of beys across the plate, then

J
= E mn,b pryd
Nmp"271 sin 5 iJ.sin 5 iJ
i=0

2EL dgd

Db 2~ ®P

- ELJ

Da mp

J
mp

1}

=75
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where
a-=2
J
J m—-7p m+ p
o) mp = 1 if T i1s even and i¢ 5 is not even
5J#p = =1 1f 9L§}3 is even and if gLﬁ}R is not even
J
o) =0 1in all other cases
mp

(See reference L4 for derivation of this sum.)

J
mp
rather than Nmp' The upper right and lower left quadrants will be

composed entirely of zeros since 5Jmp has no value if m* p 1is

ocdd. The upper left and lower right quadrants then remain as
equivalent factors, The rewritten upper left quadrant (one fac:or)
of determinant (5c¢c) appears as follows:

The determinant (5c) may now be rewritten in terms of &

J J
K+ 7% Mo 78914 M .
J J
M2 Ko+ 7522 78 o) e
=0 (7)
J J

Since the Mmp—terms contalning the shear buckling coefficlent k

appear in each zolumm, the order in k of the expsnsion of deter—
minant (7) is the same &s the order of the determinznt itself.

A study of 5Jﬁp and determinant (7) shows that the value

of SJQP alternates end recurs at intervals and thzt a2ll the values
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In equations (8) to (9) the value of 7y 18 a function of %
and f. For any of these equations, 7 can be computed for various
values of B8 at a prescribed value of k. The maximum value of 7y
for the prescribed k can be obtained from a plot of ¥y ageinst B.
Curves of k plotted against 7y, as shown in figuree 3 and 7, are
obtained by repeating the procedure for other values of k. It
appears from figure 7 that the third-approximation sclution is
accurate enough and the solution of the determinant of higher orders
18 not needed.

Large Number of Stiffeners

If all the stiffeners are identical and are equally spaced, the
condition of uniform longitudinal stiffness at any point acroes the
width of the plate is approached as the numbsr of stiffeners is
increased. Consequently, for a very large mumber of stiffeners, the
bending energy stored in all the stiffeners may be expressed as

w22 [ (& e

The work done by the applied shear T and the energy stored in the
plats Vp are given by the same expressions used in the development

for a finite number of stiffeners. Following the same procedure as
that used for the case of a finite number of stiffeners — that 1is,
equating energy and work, solving for the critical loed, setiing the
derivatives with respect to each of the unknown parameters Ap

and Bp equal to zero, setting a finite determinant in these

parameters equal to zero, and solving in this case for the shear
buckling coefficlent k — results in the following equation:

3 (51 + 7) (=5 + 7) (k5 + )

M122(K + 7) M23 (Kl + 7)

(10)

Equation (10) wes obtained by a second approximation, that 1s,
by limiting the deflection function to one, two, and three half waves
across the width of the plate. By a graphical procedure, as previously
presented, there is found for each value of 7, chosen in equation (10),
a value of B which will make kX a minimum. A curve of k plotted
against 7 obtained from equation (10) is shown in figure 8. For
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purposes of ccmparison, there 18 also plotted in the same figure the
results of the exact solution for an orthogonal plate from reference 2.
The second epproximation is sufficient to give excellent agreement
with results obtained from the exact solution.

Although equation (10) is obtained for the case of a very large
number of stiffeners, i1t actually represents the second—epproximation
solution for all cases of three or more stiffeners. This fact can be
seen from equation (7) in that the second—approximation solution of

equation (7) for all cases of three or more stiffeners gives the same
results as equation (10).

CLAMPED EDGES

Finite Number of Stiffeners

The problem i more involved in the case of clamped edges. A
different deflection function is assumed 2nd the Lagranglan multiplier
method (references 5 and 6) 1s used. With the new coordinate system

shown in figure 9, the deflectlon function for the plate is assumed
to be expressed by

[¢ <] 0o
_ 0.8 ‘ 2mry "X 2nny
wp = 8in 5= E Ap 8in == + cos < E B, cos — (11)
n=

m=1

This expression is a complete set of functions symmetric with respect
to the origin. Since the plate is iInfinitely long, the expression of
deflection by a complete set of antisymmetrical functions will give
the same results. In order to ensure zero deflectlon and zero slope
at the edges, the expression wy (equation (11)) is subject to the

following restraining conditions:

8

(-l)an =

[
Qo

(12a)

o]
&i

]
o

i m( 1] Ay

m=1

(12b)
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A set of new deflection functions is used for the longitudinal
stiffeners. For the ith stiffener,

= x Ix =
(ws)i = Ay sin N + T, cos > (1 =1,2,...N) (13)

where N {8 number of stiffeners. 1In order that the deflection of
the plate directly under the stiffener and the deflection of the

stiffener itself be the same, the expressions for vp and (ws)i
are subJect to the following restraining conditions:

= anci
by = E Amsin 5 =0 (1 =1,2,...N)
m=1

(1ka)
= 2n
nc
r, - g B, cos—bl=o (1 =1,2,...N) (1bv)
n=0
where c,; 1is the distance from the x—axis to the ith stiffener.
When the expressions for vp and wg are substituted in
equations (2), the energy expressions become
© oo__
V. =F ' 2 3 (1 + 8 (1
p°= Kp'Ap + ) Kp'By + On) Sa)
__m=l n=0
N
A 2 . p2
Vg = 2F Y1(b1T + 1y (15v)
=1

oo
2 2“’
T = nyn ] mA B (1=¢c)
m=1
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where

b
2%
| K,' = (i + hm?B€>2

= A
B"b

EqIy
71 = D3

80n=l if n=0

=0 if nf0

g@

The total energy V = Vp + VB — T 18 then to be minimized. During

the minimizing process the restraining conditions, equations (12)

and (1k), can be satisfied by the Lagrangian maltiplier method. (See
. reference 5.)

The following notation is used for the Lagrangian mmultipliers:

v and € correspond to equations (12a) and (12b), respectively;
¢1 and ¥, correspond to equations (14a) and (14b), respectively.

Then the function to be minimized is
o0 o0
f=Vp+V3—T—V§ (-1)“Bn—e§ (=1 mA
n=0 m=1

N 2 2mn
c
- E P41 <A1 - ; Ap 8in 5 i>
1=]1 m=1

N had on
DRNUE IRy (26

1=1 n=0

If the function f is minimized with respect to each of the
parameters A,, B, Ny, end Fi in turn, the following expressions

can be obtalned:



2k

FI¥

of

B_
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N
om
= 2FK, *Ap — nyNEmBm — em(-1)" Z ¢y sin ﬂci
1=1
=0 (m=1,2,...0) (17)
= 2FK,"* (1 + 50n)Bn - nyngnAn ~v(-1)?
n
N
2nnc
+Z\y1 cos bi =0  (n=0,1,2,...0) (18)
' oFy, (2n ¢
Xy 7 (28y) - ¥y
=0 (1 =1,2,...N) (19)
of
3T, * 2Fy (21y) - %
=0 (1 =1,2,...N) (20)

Equation (18) can be separated into the followlng parts:

hF‘BO - Vi

2FK,*B,,

Solving equatio

| S
€ 2F’ ¢j_
for the Atg

and Bt's

[t}

N
ZE_ ¥y =0 (corresponding to n = 0) (21a)
1=1

0
: 2mnc
m 1
Fry®mip - V(-1)" + E ¥ cos —2 =0  (21b)
=1

(= 1,2,...0)

na (17) and (21) ogsther and using the notations V' =

and W LI —1 result in the following expressions

oF’
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N
- 2mnc
Ay = Ryl e'm(-1)" - j{_ gi* sin - 1
=1
N 2m
nc
+ Sp|V*(-1)" - E ' cos — L (m=1,2,...0) (22)
i=1
N 2mnc
m ' i
B, =R ve(-1) —E ¥ cos 5
i=1

N
+ Sy etm(-1)" - ¢1' sin — 1 (m = 1,2,...») (23a)

N
By =%V' -%Z ¥y (23b)

where

R = En
T - ()2

Sp = m
(kn')® - (m)

2

2
Fyon
XY - oug3
Q Bk

If equations (19) and (20) are substituted in equations (1), the
following expressions result:
1 = 2mne
5;: ' —> Ay sin T = 0 (1 =1,2,...N) (2La)
m=1
00
1 2n1rci )
EZW;—_ Bp cos ——= =0 (1 =1,2,...N) (2up)
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If Ap and B, as given by equations (22) and (23) are put into

equations (12) and (24), the following set of simultaneous equations
is obtained with v', ¢', @;', and ¥;* a= the variables:

N N
V'R + €'S + Z¢i' (—Pi) + Z *i' (—Hi) =0 (25a)
i=1 1=1
N N
VS + ¢'G + Z¢i'(-1‘1) +Z*i.(—T1) = 0 (25b)
1=l 1=1

N
v'(—PJ) +e'(-LJ) *;9’1'("13) + 8y 27—15 +i*1'("13) =0 (25¢)

i=1

(3 =1,2,...N)

v'(8y) + et (-1y) *i B1* (W13) +i v1' (245) +v3'<2,ij>= 0 (254)

1=1

(3 =1,2,...N)

where

m=1
(-]
G = maRm
m=]1
®
2mnc
-1 z J
EJ =5+ (--l)mIim cos —
m=1
o
2mnc
LJ = m(—l)mRm 8in ——.B—Q
m=
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2. 2mre, 2onmnc
IiJ =ZRm sin - sin =Xdi

b b
m=1
1 had 2nmc1 2mnc
ZiJ =-2—+ RmCOS 5 cos 5 =ZJi
m=1

ke 2mne
- - ]
PJ = (-1) Sy sin 5
m=1
® )m 2mnc
Ty = m(-1) S, cos 5
m=1
o) 2m:rci 2m;|tc‘j
wiJ = :>: Sm cos 5 sin 5
m=1

There are 2N + 2 equations in the preceding system of simultaneous
equations and there are 2N + 2 unknowns, namely, V!, €*, f,1,

}52', "’¢N" ¥i's V,o's ... and ¥ '. In order to ensure a

nonvanishing solution for these Lagrangian maltipliers, the following
determinant must be zero:

a7
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R S -H; ~P,
S G -7y -Lo

-H, -T; R+l W

1 T R 12
1

-P, -L W Xon + —L—
2 —Lp 12 Xoot gl
-Hy -Tp Zj5 Woo
=Py =Ly Wy Xoy
-H, -Ty Z1y Wyo

Determinant (27) is now of the N + 2
of ons and two longitudinal stiffeners, the corresponding determinan‘s

are as follows:

For one stiffener

For two stiffeners

~H 1

order.

S -H,
G - Tl = O
—Tl R+ ——l
=70
—Pp -Hp
—-Lp ~Tp
X + = W
22* 1y 22
;
W22 222 + 1_-‘470

NACA

TN No. 1589

=0 (27)

For the particular cases

(28)

(29)
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In determinants (27) to (29), each element is an infinite series
consisting of functions of k and B. For each of the determinants,
Yo can be computed for various values of B at a prescribed value

of k. A maximum value of 7y, for this prescribed k can be

obtained by plotting 7, agalnst B. A number of these maximum
values of 7, corresponding to various values of this prescribed k

can be obtalned. Instead of plotting k agalnst 75, k was

plotted agalnst 7, as was done for the case of simply supported
edges, where 7y = J7° and J equals the number of bays into which

the plate 1s divided by the stiffeners. Thus, J = 2 for one
stiffener and J = 3 for two stiffeners. The advantage of such a
plot 18 that the various curves for differen:t numbers of stiffeners
become almost coincident. (See fig. 3.)

Large Number of Stiffeners

In the case of a very large numbsr of stiffeners of equal
stiffness and equally spaced across the width of the plate, the
bending energy stored in the stiffeners may be expressed, Jjust as
in the case of simply supported edges, as follows:

%%d/‘ L/‘ <:;—— dx dy
b/2U0

If, now, the same deflection function as given by eguation (11) for
the plate 1s used for the stiffeners, the following expression is
obtalined for the bending energy stored in the stiffeners:

f\)l!—'

[d o0

Vg = Fy ZAmQ +ZBn2<l + Sop) (30)

m=1 n=0

There is no change of expressions in Vp and T. Of course, since a

separate deflection function for the stiffeners 1s no longer used,
there is no need for the restraining conditions of equations (1k).
The function to be minimized 1s

=V, + Vg —T—VZ(—l)nB -eZm(—-l (31)

m=1
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If the same steps are followed as before, the following determinantal
equation is found to be the condition for the existence of nonvanishing
solutions for the Lagranglan multipliers:

:E:::m?Rm' :Ef: mS,*

m=1 m=1

zz::nsmv Eziji_;7.+jg::3mv
=1 m=1

[}
o

(32)

where

; ' 7

Rp' = (Km' + 7)2 - (mQ)2

v - mQ
m (Km' + 7)2 - (mQ)2

S

In determinant (32), each elemsnt contains an infinite series of
functions of k, 7y, and B. For prescribed values of both ¥y and B,
several values are assigned for k and the corresponding values of the
determinant can be determined. If the values of the determinant are
plotted against k, one value of k can be found which makes the value
of the determinant vanish. This particular value of k 1s called k,.

Now, if the value of f§ 18 changed (whlle the value of 7y remains
the same), the corresponding value of k, 1s also changed. There

exists a certain B which makes the value of kg a minimum. This
minimum value of k, 1is the critical shear buckling coefficient k

corresponding to the prescribed value of y. In a simllar manner,
other critical shear buckling coefficients can be determined for other
prescribed values of 7. Finally, a curve can be obtained with k
plotted asgainst 7. This curve is presented in figures 3 and 8. In
figure 8, the exact solution for an orthotropic plate from reference 2
was also plotted for comparison.

From the results obtained in the case of simply supported edges,
it 1s believed that the curve obtained for a large number of identical
equally spaced stiffeners represents the solution for all cases of
three or more stiffeners.
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DISCUSSION OF THEORETICAL RESULTS

In the foregoing analysis 1t is seen that for both simply supported
and clamped edges a determinant 1s obtalned for the determination of the
shear buckling coefficient k. In the case of simply supported sdges,
the usuel ensrgy method was used and the determinant has been solved by
first, second, and third approximations. They converge very fast,
however, as may be Jjudged from the results of the solution for one
stiffener. (See fig. 7.) Also, figure 8 shows that the second-approxi—
mation solution for a large number of stiffeners i1s sufficlent to glve
excellent agreement with results obtained from reference 2. In the
case of clamped edges the Lagrangian multiplier method was used and
the solution of the determinant 1s exact. If enough terms 1n each
infinite serles are taken, the solution can be made to any desired
accuracy.

Curves of the stiffness factor 7y plotted against the shear
buckling coefficlent k for one centrally located stiffener, two
identical equally spaced stiffeners, and a large number of identical
equally spaced stiffeners are shown in figure 3 for both simply
supported edges and clamped edges. The curve for a large number of
identical equally spaced stiffeners represents the solutlon for all
cases of three or more stiffeners. Since the curves of figure 3 do
not depart from one another by more than about 2 or 3 percent over
the range shown, practicability would dictate the use of the curve
for a large number of identical equally spaced stiffeners to predict
the buckling load for a plate with any number of stiffeners, provided
the dbuckling coefficient so obtained is not higher than could be
obtained by replacing the stiffenera by simple supports. On the basis
of the criterion just stated, it is apparent from figure 3 that in
the case of a gimply supported plate reinforced with a single stiffener
no further increase in the shear buckling coefficient k can be
obtained by increasing ¥ beyond about 2000. Similarly, it is seen
that for the case of a simply supported plate reinforced by two
identical equally spaced stiffeners no further increase in the shear
buckling coefficient k can be obtained by increasing 7y beyond
about 45,000.
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TABLE 1

DIMENSIONS OF SPECIMENS

width, |thickness, ener ensr — _EI
Spocimen) ™7, £ e netant | wiath | “nece |7 T Ba
(in.) (in.) (in.) | (1in.) (in.)
One-stiffener specimens
1 6.00 0.0340 418,00 | ~=mee | cmmee | cmmmee. 0
2 6.04 0334 47.98 [0.18 |0.31 0.0281 16.5
3 6.02 .0337 48.05 .300 .315 .0376 78.4
L 6.00 .0330 48.12 .305 .290 0331} 153
5 6.01 .0325 48,09 420 460 .0391] 234
6 5.99 L0334 48.00 510 .385 Ouoh | W77
7 6.00 .0326 418.07 .550 .500 .0391] 503
8 6.00 0327 48.06 .550 650 Ohg2 | 633
9 5.96 .0313 48.00 622 642 .0395| 82k
10 5.98 .0316 48.02 581 653 0626 | 1050
11 5.9% .0315 L8.0k 623 .718 .0621 | 1290
12 6.00 .0315 48.05 .668 . 700 .0630 | 1570
13 6.00 0312 418.03 665 115 L0622 | 1590
1k 6.06 .0330 L8.02 .985 «795 L0618 | 4180
Two—stiffener specimens
15 7.88 0.0326 63.0 | m==-= | =-e-e | —--eeo 0
16 7.88 .0326 63.0 0.248 [0.505 | 0.0327 53.4
17 7.88 .0321 63.0 .348 649 0334 | 1kt
18 7.88 .0326 63.0 .550 721 .0328 | L84
19 7.88 .0325 63.0 685 .T94 .0510 | 1390
20 7.88 .0325 63.0 9l .783 L0634 | 4540
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Figure 1.- Test specimens. (All dimensions are in inches.)
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Figure 2.-

Photograph of test setup.
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Figure 4.-
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Shear deformation, in.

Typical load-deformation curve for shear webs.
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/6

24.0 R24.6
12 /8.5 } i
» Mayx. load /9.0 % i/} /j {j J
2 /8*-4 %
o
Q&\ 8 1
N
§ ) (R {/
(€5, %
FrEcimen s, 83 4 5 6 7
0 1=0 V=165 7=78.4 _57=/53 Y=234 $7=477 $7=503
o Jest results
&), (Rr) Computed shear buckling load for clamped
©2 3 and simply supperted édge condition, respectively
24
276
28.9 2092 |
Max. load _ 25,2
239 } 24.7 6.8 %
/6 A ‘ 4
(@r% f /1 / f/ / ?/’/
g /12 f
X /
- 8
\l
4

%8 gQ g/O %// é/‘? 5/3 314
0 T=633 97= 824 Y= 1050 T=1290 3Y=1570 T=1590 3 Y= 4180

fation Squared Scale —————t
Dev n 59 0 gorio 8

(a) Webs with one stiffener.

Figure 5.- Comparison of test results and theory on the shear buckling
load of long flat plates with longitudinal stiffeners, identical and
equally spaced.
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8 Test results pucklin | 388
Rr) Computed shear buckling load  for clamped
24 (8 and é)/mp/_y supported ea'9 e condition, respec tively

: /
l

/6 }

N
\K
X>—~I—
‘0\\ )
M L
™

“
N
~ bo 282
< Max load | ° b
§ Moyl | ;
RS
4 g E
I
(g B3 16 /7 / 20
053420 8Cssa 87 S4tapa 342300 T= 4540
Deviation squared Scole  +—— g
0 80x10

(b) Webs of two stiffeners.

Figure 5.- Concluded.
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Nodal lines

—_— - Locations of stiffeners
{(for clarity, only two
are indicated)

Figure 6.- Coordinate system used in theory for simply supported plates.
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L6 NACA TN No. 1589

Numbering system
for the stiffeners

Figure 9.- Coordinate system used in theory for clamped plates.




